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The plot of this book was quite interesting; it is worth reading! e

Figure 1: The transferable syntactic structures” of two examples
(i.e., (a), (b)). The colorful boxes (“DT”) and black lines (e.g., “det”)
indicate POS tags and syntactic relations, respectively. As shown in
(c), the syntactic structures are similar between domains so that it
is easy for human to understand the hidden knowledge behind sen-
tences in different domains. However, those adaptive graph features
are largely ignored by existing domain adaptation research.

First, sentiment words play a crucial role in CDSC, while

POS tags can distinguish sentiment words (e.g., “horrible”
and “interesting” in Figure 1) via the POS tag “]J" in a natural
way, I.e., the “JJ" label means the word is an adjective.

Second, the sentiment polarity of reviews is largely
influenced by the sentiment word’s neighbors, whether they
are in-domain or across-domain.

Third,the syntactic graph structures of sentences in differ-
ent domains are remarkably similar, which means that the
syntactic rules are domain-invariant and can be naturally
transferred across domains.
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Figure 2: The architecture of GAST, which consists three parts: (a) the POS-Transformer that can learn sequential semantic rep-
resentation by considering both the word sequences and POS tags; (b) the HGAT module which can exploit adaptive syntactic
semantics of the sentence through the syntactic relation graph. (c) an IDS (i.e., Sentiment Classifier, Semi-supervised Feature
Alignment and Domain Discriminator) to optimize the model and encourage it to be domain-invariant and syntax-aware.
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Figure 7: The framework of the ablation model G_Non_IDS =
as described in section 4.6. It mainly includes two tasks, i.e.,
sentiment classification and domain classification.
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Table 1: Statistics of datasets after pre-processing.

Biainaiie Testing set percentage
#Train #Vali. #Test #Unlabel
Books 1,600 400 2,000 4,000
DVD 1,600 400 2,000 4,000
Electronics 1,600 400 2,000 4,000
Kitchen 1,600 400 2,000 4,000
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Figure 3: The percent of transferable dependency relations
in different domains. We visualized the top 9 relations.
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Table 2: Sentiment classification accuracy (%) on the twelve transfer tasks.

| DVD (D) Book (B) Electronics (E) Kitchen (K)
Baselines

| D—B D~—E DHK| B—D B—E B—K| E—D E—B EI—)K‘ K—D K~—B K—E
SCL 77.8 75.2 75.5 80.4 76.5 77.1 74.5 71.6 81.7 75.2 71.3 78.8
SFA 78.8 75.8 75.7 81.3 75.6 76.9 75.4 72.4 82.6 74.7 72.4 80.7
DANN 80.5 77.6 78.8 83.2 76.4 77.2 77.6 73.5 84.2 75.1 74.3 82.2
AMN 84.5 81.2 82.7 85.6 82.4 81.7 81.7 76.6 85.7 81.5 80.9 86.1
HATN 80.6 86.3 87.4 86.5 85.7 80.8 84.3 81.5 87.9 84.7 84.1 87.0
IATN 87.0 86.9 85.8 86.8 86.5 85.9 84.1 81.8 88.7 84.4 84.7 87.6
BERT-DAAT 90.8 89.3 90.5 89.7 89.5 90.7 90.1 88.9 93.1 38.8 87.9 91.7
LSTM 75.6 73.4 - 78.6 75.2 - 72.2 69.6 - - - -
TextGCN 80.8 77.6 79.2 85.3 81.1 79.7 82.6 78.2 82.3 83.3 841 81.7
FastGCN 81.6 80.6 81.1 86.0 82.7 82.0 83.5 78.7 84.5 34.2 85.7 83.4
GAST 87.9 87.3 39.1 38.2 86.2 87.4 85.0 834 89.3 87.7 87.5 894
BERT-GAST 91.1 90.7 92.1 90.4 91.2 91.5 90.7 894 93.5 89.7 89.2 92.6
G_Non_FPos-Tran. 85.9 84.7 87.6 86.8 83.4 85.5 84.2 80.4 87.8 85.8 85.5 87.4
G Non HGAT 86.6 85.9 88.1 87.4 85.0 86.1 84.5 81.3 88.2 86.4 86.7 88.2
G_Non_IDS 87.2 86.6 87.9 87.6 85.8 86.7 85.0 82.6 88.5 85.9 86.2 87.7
G_Non_agg 87.5 86.7 88.9 88.0 85.9 86.9 85.2 82.6 89.0 87.3 87.2 89.1
G_Non_act 87.3 86.3 88.7 87.7 85.3 86.2 84.8 81.8 88.7 86.9 87.1 88.7
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(a) Case Example 1: The attention values related to the word “horrible™.
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The plot of this book  was  quite  interesting: it is worth  reading!
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(b) Case Example 2: The attention values related to the word “interesting™.

Figure 4: Attention score visualization of the different words. The attention values from vanilla attention (i.e., Att.(Q, K, V) in
formula 2), POS-attention (i.e., Att.(Q', K!, V) in formula 2) and HGAT (i.e., § in formula 8) are associated with the row (1), row
(2), and row (3) respectively in both examples. Note that, some values are infinitely close to 0. That makes sense because HGAT
makes the attention value more concentrated on the syntactic-related words.
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Figure 5: The influence of sample number. We explore the
impact of sample number with different ratio (i.e., abscissa)
of source domain. For the limited space, we only show the
results of the task “B—D".
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Table 3: The performance (%) of different syntactic graphs
constructed by different parsers on D—=* tasks.

Syntax Parser D—B D—E D—K
(1) Without Graph 86.6 85.9 88.1
(2) Stanford Graph 87.1 86.6 88.6

+compare with (1) (+0.5) (+0.7) (+0.5)
(3) Biaffine Graph 87.9 87.3 89.1
+compare with (1) (+1.3) (+1.4) (+1.0)
+compare with (2) (+0.8) (+0.7) (+0.5)
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Table 4: The Influence of model depth (i.e., attention heads)
on Di—# tasks. The metric is accuracy (%).

Models D—B D—E D—K
HGAT w 1 head 86.9 86.4 87.5
HGAT w 2 head 87.2 86.8 88.4
HGAT w 3 head 87.9 87.3 89.1
HGAT w 4 head 87.7 87.2 88.7
HGAT w 5 head 87.5 86.9 88.2
Trans. w 5 head 86.6 86.1 88.4
Trans. w 6 head 87.6 86.7 88.7
Trans. w 7 head 87.5 87.0 89.1
Trans. w 8 head 87.9 87.3 89.1
Trans. w 9 head 86.8 87.1 88.8
Trans. w 10 head 87.2 87.3 89.0
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Figure 6: The t-SNE projection of the extracted features. The
above three subfigures (i.e., (a)~(c)) show t-SNE visualization

of different model’s feature embedding for the B—D task.

The red and blue points in (d)~(f) denote the target positive
and target negative examples, respectively.
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